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Abstract—The impulse response of acoustic surface-wave (ASW)
filters is determined by the configuration of an array of planar trans-
ducers tapping the acoustic signal propagated in the piezoelectric
substrate. The transducer configuration is derived here by applying
the general procedure used for the synthesis of linear transversal
filters, which consists in time sampling the required impulse re-
sponse and arranging the spacing and weights of the taps according
to the time intervals and amplitudes of the impulse-response sam-
ples. The design of the tapping structure that synthesizes the im-
pulse response of ASW transversal filters is based on a nonuniform
sampling procedure, previously developed by the authors, that meets
the particular requirements of ASW device operation. The features
of this design procedure are presented, and several geometries of
tapping transducers corresponding to impulse responses of different
characteristics are discussed. The application of the procedure to
the design of typical ASW filters is illustrated by the results of ex-
perimental models. -

1. INTRODUCTION

INCE the development of the first transducers capable
S of launching or detecting acoustic waves propagated

along the surface of a piezoelectric substrate, scientists
working in the field of signal processing envisioned the poten-
tial applications of a delay line offering a new fundamental
degree of freedom: the possibility of a continuous access to the
traveling signal in any point of the propagation path. Signal-
processing devices had previously been implemented by tap-
ping bulk acoustic waves propagated in suitable three-dimen-
sional structures [1]; however, the technique of tapping
surface acoustic waves by transducers consisting of metal
strips directly deposited on the propagation surface [2] led
one to conceive the capability of achieving the same filtering
functions with planar structures, whose fabrication required
techniques analogous to those employed for integrated cir-
cuits, and thus appeared easy and highly reproducible.

Theinterest was first attracted by the possibility of imple-
menting delay lines having dispersive characteristics; by ar-
ranging on the propagation surface a planar array of suitably
spaced selective transducers, one could be able to obtain a
delay variable with frequency depending only on the trans-
ducer geometry. This new technique of achieving a dispersive
characteristic was first devised by Rowen [3]. Successively, a
great amount of work was devoted to the implementation of
acoustic surface-wave (ASW) dispersive signal processors, in
particular to meet the signal-processing needs of matched
filters for radar systems [4].

The further basic degree of freedom offered by ASW tap-
ping was later pointed out in the possibility of weighting the
amplitude of the detected signal simply by varying the aper-
ture of the transducer parallel to the acoustic wavefront.
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Based on this property, the possibility was realized of weighting
the frequency response of ASW devices by implementing
arrays of transducers with suitably graded apertures [5].
Planar transducers having two-dimensional structures were so
designed, consisting of arrays of parallel electrodes whose
spacing along the propagation direction determined the time
delay of the generated/detected signal outputs and whose
aperture normal to the propagation direction determined the
corresponding weights [6]. As pointed out by Squire et al. [7],
these two degrees of freedom constitute the basic parameters
for the synthesis of the transfer function of any linear filter.
The synthesis of ASW filters was theoretically investigated by
Tancrell and Holland [8] and by the authors [9] using dif-
ferent approaches. Tancrell and Holland described a model of
ASW filter operation in the frequency domain. Our analysis is
based on the concept that ASW filters can be considered as a
particular implementation of Kallmann's transversal filters
[10], and the transducer design can be derived from sampling
theory in the time domain. In fact, each single electrode,
detecting the electric field associated with the piezoelectric
wave traveling beneath, provides a sample of the propagated
signal. An array of electrodes graded in spacing and aperture
thus provides a set of signal samples accordingly delayed and
weighted. When an impulse, propagating along the line, passes
such an array, the resulting response is a set of samples repro-
ducing in time the spatial configuration of the array. In other
words, the array configuration is a stationary replica of a
time-sampled version of the desired impulse-response function.
This paper shows how planar-transducer geometries can be
designed that synthesize in a sampled form the impulse re-
sponse corresponding to any specified transfer function. The
design procedure derives from the application to the general
theory of linear transversal filters of a particular sampling
procedure, previously developed by the authors [9].

I1. COoNCEPT OF TRANSVERSAL FILTER

Inlinear transversal filters, first described by Kallmann, the
filtering function is synthesized by tapping at appropriate
points the signal launched in a lossless nondispersive delay
line, and weighting and summing the signal contributions from
the taps (Fig. 1). The design procedure consists in sampling in
the time domain the required impulse response and in arrang-
ing the positions, weights, and polarity of the taps in accor-
dance with the time intervals, amplitudes, and sign of the
impulse-response samples. X

Let %(f) represent the filter’s impulse response and 7; and
A ; the occurrence time and the value of the ¢th sample, respec-
tively. Then, the corresponding tap must be delayed by 7,
weighed by IA;[ , and its polarity determined according to the
sign of A;. Assuming lightly coupled nonreflecting taps, the
transversal-filter impulse response is given by the sample
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Fig. 1. Scheme of a transversal filter.
sequence

s

hs(f) = 2 Ad(t — 1) 1)

where & is the Dirac impulse function. As is well known, the
corresponding frequency response consists of the desired trans-
fer function, i.e., the Fourier transform of k(¢), and of a
number of harmonic components. Under proper conditions,
the fundamental frequency response can be selected by band-
pass filtering, and thus the overall impulse response of the
device at the output of the cascaded bandpass filter is the re-
quired function A(t).

This procedure permits, in principle, the synthesis of any
linear filter. The practical implementation of such a device,
however, requires a means for controlling the spacing and
weighting of the tapping elements. ASW delay lines offer this
capability, since, as mentioned above, continuous tapping and
weighting of surface waves can be achieved by controlling the
spacing and aperture, respectively, of surface-electrode trans-
ducers. The geometry of this tapping structure and the manner
of inserting the required tap polarity is discussed in a follow-
ing section.

IT1. PHASE-SAMPLING PROCEDURE

The design of the tapping electrode configuration of an
ASW transversal filter requires the determination of a sampled
form of the wanted impulse response. Since the time charac-
teristics of the impulse-response function are known a priori,
we have the possibility of choosing the sampling procedure
most suitable for the design of a simple and efficient tapping
structure. The question arises from which sampling procedure
results the most convenient for the particular operation of
surface-wave devices.

The first ASW filters that have been realized were disper-
sive devices, implemented by varying the periodicity of an
array of finger-like electrodes of constant aperture according
to the change of acoustic wavelength in the desired frequency
range. The dispersive characteristic of such a structure was
intuitively explained by considering that each frequency
component was generated or detected at the position along
the array where the electrode spacing was dimensioned to the
corresponding wavelength; the time delays of different fre-
quencies were so determined by the distances of the cor-
responding groups of electrodes [11].

The effort of framing this intuitive design criterion into the
general method of transversal-filter synthesis led the authors
to the development of a new procedure of sampling the filter
impulse response. In order to understand the basic idea of
this sampling procedure, let us consider first an impulse re-
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Fig. 2. Example of the phase-sampling procedure,
(a) Continuous waveform. (b) Phagse-sampled waveform.

sponse having a rectangular envelope and arbitrary phase-
modulation (PM) law, represented by

T
k(t) = cos ¢(1), | ll < >
=0, elsewhere. (2)

In general, sampling of this waveform at uniform time inter-
vals, as suggested by the Shannon theorem, would yield
samples of nonuniform amplitude, and thus the corresponding
tapping electrodes of an ASW transversal filter ought to be of
nonuniform aperture. This is not a desirable feature, since
constancy of the electrode aperture ensures maximum energy
collection and uniform illumination for all the array. More-
over, the velocity of surface elastic waves changes under the
electrode metallization so that phase and amplitude distor-
tions of the traveling wave are caused by fingers of nonuniform
aperture [12].

Samples all having the same amplitude can be obtained by
sampling % (#) (2) in correspondence with its positive and nega-
tive peaks, i.e., where the instantaneous phase ¢(t) assumes
values as multiples of w. Since the positions of these sampling
points depend on the PM law, the requirement of uniform
sample amplitude leads, in general, to a nonuniform sampling
interval. In the next section it will be discussed under which
conditions this particular sampling procedure permits the
reconstruction of the continuous waveform %(f).

When the impulse response is also amplitude modulated,
i.e., has the form

h(t) = a(1) cos ¢(2) 3)

where a(f) is a positive envelope function, the samples deter-
mined according to the above criterion are no longer of con-
stant amplitude; however, they have maximum amplitude!
with respect to that obtainable using any other sampling
procedure.

Finally, when the impulse response is not phase modulated,
ie.,

h(t) = a(t) cos (2nfol) (3)

where fo is a constant carrier frequency, the sampling interval
becomes uniform, and the phase-sampling procedure coincides
with the classical Shannon’s one.

IV. RECONSTRUCTION OF PHASE-SAMPLED WAVEFORMS

Let us consider the general waveform (3), which is both
amplitude and phase modulated, and assume as sampling
points the times f,, where the instantaneous phase ¢(¢) is a
multiple of m, i.e.,

! This may not be rigorously true because of the weighting effect of
the envelope a(f); the difference, however, is usually negligible.
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Fig. 3. Spectral band distribution of a phase-sampled waveform,

6() = nm, (4)

The set of the so-obtained 8-function samples can be written as

hs() = h(1) 22 8[e() — nr)

n = integer.

(5)

a(t) 2o (—1)sle(t) — nr)

where the summation is extended to all the values of # con-
sistent with (4). The sequence of 3-functions

2 (= 1)m8[e(t) — nr] (6)

is constructed by sampling the oscillating factor cos ¢(f) of
k(®) (3), and has constant periodicity with respect to ¢(f). When
considering samples having finite width (i.e., not 3-functions),
which is the case of physical interest, we are therefore led to
introduce, in place of (6), a train of rectangular pulses still
having the periodicity of cos ¢(¢), that is, having a uniform
interval and width with respect to ¢ (). The nth of such pulses
has leading and trailing edges, respectively, at the times Z,
and t,3, where

P .
o) = nr F 2 withp < = (M
and has the same sign of cos ¢(t,).
This sequence of pulses of alternate sign, constant period
2mr, and width p, with respect to ¢(¢), can be expanded into
a Fourier series obtaining

> Cocos [mé(0)]

1 m odd

(8)

where the zero and even harmonic terms are missing and the
odd Fourier coefficients are given by

4 p
Cm = —sin (m —) , m odd. 9)
™m 2
"The sampled version kg(f) of 2(¢) thus becomes
hs(t) = a(f) D, Cncos [me(0)]. (10)

1 m odd

An example of a phase-sampled function is shown in Fig. 2;
samples result of nonuniform width in the time domain,? the

2 In the limit theoretical case of an instantaneous sampling [p=0 in
(7)], a weighting factor must be introduced in the amplitude of the -
function samples to ensure constance of the sample energy as p—0. As
remarked by Tancrell [13], the weighting factor of the sample at the
time ¢, is inversely proportional to the instantaneous frequency ¢’(t.) of
h(#) at ¢, (the apex denotes the derivative with respect to time). This fol-
lows by substituting in (5) the identity 8[¢(t) —nw]=80—1t.)/|¢ () |.

leading/trailing edges of two adjacent samples occurring at
the times where the phase ¢(¢) is increased by .

The expression (10) enables one to simply evaluate the
spectral distribution of the sampled waveform. In fact, the
fundamental Fourier component of kg(f) coincides, apart from
the amplitude factor Ci, with the continuous waveform £(f),
and thus its spectrum coincides with the spectrum H(f) of k(%).
The harmonic components are waveforms of the same struc-
ture of #(t), but have instantaneous phase m¢(f) modified by
the factor m with respect to the phase ¢(f) of 4(¢). Their
spectra can be approximately evaluated using the principle of
stationary phase [14], which yields to the fundamental result
that the harmonic spectra all have the same fractional bandwidth.
In fact, we have shown [9] that the spectral amplitude
lH"‘(f)| of the mth harmonic A™(¢) is related to that [H(f)l

of h(f) by
Al

. —_
| 2D =
Hence, the spectrum H™(f) at the frequency f has an ampli-
tude proportional to that of H(f) at the frequency f/m. Denot-
ing by B the bandwidth of %(f) and by f, the center frequency,
this means that the bandwidth B™ of the mth harmonic com-
ponent is B®=mB and its center frequency is fo™=mfs, so
that the fractional bandwidth

(11)

B B (12)
fom fo
is constant for any m.

The distribution of the occupied bands of the sampled
waveform hg(t) is shown in Fig. 3. It can be recognized that
reconstruction of 4(¢) by bandpass filtering the fundamental
spectrum is allowed if

5 <1 (13)
fo ™

since this condition ensures no overlapping between m = 1 and
m#1 spectra,

When %(f) is not phase modulated, i.e., has the form (3'),
samples result of uniform time spacing and width. The har-
monic spectra all have the same bandwidth, and reconstruc-
tion of k() by bandpass filtering now requires the condition

B
— < 2,
fo

V. DESIGN oF THE TAPPING TRANSDUCERS

(14)

The above analysis has demonstrated how the phase-
sampling procedure permits the synthesis of a given impulse-
response function. We shall now describe how a planar con-
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Fig. 4. Single-phase electrode grating synthesizing samples of constant
amplitude and opposite polarity.

Fig. 5.

Bipolar double array with a fish-bone-like
coplanar reference electrode.

figuration of electrode transducers must be designed in order
to implement the tapping structure of an ASW transversal
filter with a phase-sampled impulse response.

A. Synthesis of Constant-Amplitude Impulse Responses

In piezoelectric materials, elastic surface waves are de-
tected by the potential difference excited between a pair of
electrodes interested by the electric field associated with the
acoustic stress. Surface-wave tapping can be realized by de-
positing on the propagation surface an array of finger-like
electrodes and picking up the voltage of each of these elec-
trodes with respect to a ground electrode below the piezo-
electric substrate [15], [16]. This type of transducer, referred
to as a “single-phase” electrode transducer, acts as a linear
antenna collecting the piezoelectric field traveling beneath.
The sets of positive and negative samples of a constant-
amplitude impulse response are synthesized by two coplanar
single-phase gratings of constant-aperture electrodes, spaced
according to the sample intervals, that are connected, respec-
tively, to the noninverting and inverting input of a differential
amplifier (Fig. 4).

Single-phase electrode transducers, however, have been
found to be less efficient than “alternate-phase” transducers,
where a reference electrode is inserted directly on the propaga-
tion surface, paralle] to the tapping electrodes; in fact, in this
case the distribution of the electric field between the electrodes
‘interests essentially the same volume of the surface waves, and
does not depend on the thickness of the substrate [16], [17].

A planar structure equivalent to the single-phase double
array illustrated above is shown in Fig. 5. The two electrode
gratings are now faced to a coplanar reference electrode re-
sembling a fish bone. The intermediate electrodes between the
fingers of each array must be colinear with the fingers of the
array of opposite polarity in order to keep the periodicity of
the electric-field distribution. This transducer geometry re-
quires a balanced input/output network. When the samples
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have uniform amplitude, however, the structures of the two
double arrays are identical, and only one of them can be used.
The resulting configuration is the classical scheme of the
“interdigital” transducer, which does not require a balanced
network.

In order to understand how this simple structure provides
the required sampled impulse response, consider a surface-
elastic impulse propagating along the array. When the im-
pulse passes beneath an electrode, the associated electric field
induces a charge on it that determines a potential difference
between the two combs. When the impulse interests an elec-
trode of the other comb, a charge of the same sign is induced,
and an opposite potential difference results. The impulse re-
sponse of the interdigital array therefore consists of a sequence
of positive and negative pulses, whose time configuration is
the image of the spatial pattern of the array.

An alternative configuration equivalent to the fish-bone
structure is shown in Fig. 6. The teeth of the two noninter-
leaved combs are now faced to a coplanar reference electrode
having the form of a meander line folded around them, and
passing in correspondence of the zero-crossing points of the
impulse-response function. This geometry permits us to inter-
leave the two combs, obtaining the configuration shown in
Fig. 7(b). Although the resulting electric-field distribution
(Fig. 7) is similar to that obtained with an interdigital array
of the same periodicity (Fig. 8), a 3-dB-efficiency improve-
ment is obtained by the insertion of the meander-like ground
electrode. In Fig. 9 is shown the amplitude versus frequency
response of a transmitting—receiving pair of such transducers,
each operating at 4 MHz with a 3-dB bandwidth of 2 MHz.
One can remark the noticeable exaltation of the third-har-
monic response, a feature that can have interesting applica-
tions for overtone transducer operation.

B. Synthesis of Amplitude- Modulated Impulse Responses

The synthesis of amplitude-modulated impulse responses
can be achieved by single-phase electrode transducers using an
arrangement similar to that shown in Fig. 4 with the finger
active lengths graded proportionally to the sample weights
a(t,) =a,. In fact, the active length of each electrode, i.e., the
length facing the reference electrode below the substrate,
determines the amplitude of its impulse response.

When a coplanar fish-bone-like reference electrode is in-
serted in this structure (Fig. 10), each finger of the two combs
is surrounded on either side by the reference electrode. The
basic assumption is made that the response from one finger is
proportional to the length of this finger facing the adjacent
electrodes. In fact, when an elastic impulse passes beneath a
finger, it can be reasonably assumed that the charge induced
on it by the electric field associated with the impulse depends
on its length facing the adjacent electrodes on both sides, and
hence the excited potential difference has a value proportional
to this facing length. This assumption is substantially con-
firmed by the experimental observations.

Consider a finger of one comb at the position x, (Fig. 10).
If 2, is its aperture, its total facing length is 2z,. If 2, is made
proportional to a,, i.e., z,=Ka,, with K a suitable constant,
the finger response also results proportional to a,. On the
other hand, the colinear finger of the fish bone faces in turn
on either side finger of the other comb. If 2,_,=Ka,, and
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Bipolar noninterleaved arrays with a meander-like

coplanar reference electrode.

Fig. 6.
+ 0 - 0 +
(a)
+
{b)
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Fig. 7. Pictorial representation of the electric-field distribution in
bipolar interleaved arrays with meander-like ground electrode.
(a) Side view. (b) Top view.

(b)

0

Pictorial representation of the electric-field distribution in an
interdigital transducer. (a) Side view. (b) Top view.

Fig. 8.

#np1=Ka,y1 are the apertures of these side fingers, the total
facing length is 2, 1+ 2,11 =K(ay—1+ax+1). Hence, the overall
response of the two colinear fingers at x, is the sum of two in-
phase contributions proportional to

an-1 + an
Zzn + Ba—1 + Zn+l = 2K <an + _‘1—2_~i—1> . (15)

The difference with respect to the desired weight a, results
negligible only if the value of a, does not significantly differ
from the average value (¢,—1+@,1)/2 of the weights of the
adjacent taps. When this difference is too large, the correct
weights can be obtained by designing the lengths 2, of the
fingers of the two combs so that the response at «, results in

Zzn + Zn—1 + Znyl = Yan (16)

with v constant.

Hartemann and Dieulesaint [5], [6] implemented ASW
filters of amplitude-modulated impulse responses using a
structure resembling half of the double array in Fig. 10, with

Fig. 9.

Spectrum-analyzer display of the (sin? x)/x%-shaped amplitude
response of a transmitting—receiving pair of bipolar interleaved arrays
of constant pitch with meander-like ground electrode. Each array
operates at 4 MHz with a 3-dB bandwidth of 2 MHz. Bulk wave
responses can be observed between the first and third hatmonic.
Vertical scale: 10 dB/div. Horizontal scale: 2 MHz/div. Center
frequency: 9.2 MHz.
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Fig. 10. Bipolar array of length-modulated fingers with

fish-bone reference electrode.

the fingers of one comb graded in fength proportionally to the
amplitudes of the samples of one sign. In this case, the re-
sponse of the length-modulated fingers provides samples of
the same polarity having the desired amplitudes, while the
response of the constant-length fingers provides samples of
the opposite polarity having amplitudes equal to the average
of those of adjacent fingers.

An alternative configuration is obtained by eliminating the
reference electrode and interleaving the two combs (Fig. 11).
In this structure, each finger directly faces two fingers of the
other comb. With reference to Fig. 12, let Ag,_;, As,, and
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Fig. 11. Interdigital array with length-modulated fingers.
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Fig. 12, Elementary cell of an interdigital array with

length-modulated fingers.

Az,y1 be the lengths of three adjacent fingers exceeding the
middle line of the two combs. It can be easily recognized that
the total facing length of the #th finger is

2A2n + Azn_l + AZ"+1. (17)

By arguments parallel to those used above, the response of the
nth finger is assumed proportional to this quantity. Also in
this case, therefore, the variation of the finger lengths must
be designed so that the total facing length (17) results propor-
tional to the required weight a,. However, when

An—1 + an+1

2

(18)

Ay =

as it always results for impulse responses having low frac-
tional bandwidth, the required weight is achieved simply by
making Az, proportional to @,. Thus when condition (18) is
met, the total length of the nth finger results in

Z
Z. pl

where Z is the distance of the two comb collectors (Fig. 12),
i.e., is a linear function of the corresponding tap weight. A dif-

ferent method for implementing the tap weights by varying

the finger lengths was described by Tancrell and Holland [8].

C. Synthesis of Discrete-Phase-Coded I mpulse Responses

A class of impulse responses that can be simply synthesized
by ASW transversal filters is that of waveforms having phase
discontinuities. The feature of these waveforms is that adja-
cent samples around a phase discontinuity can have the
same sign.

Consider, for instance, the waveform shown in Fig. 13(a),
which exhibits a phase inversion at the time . The samples at
times £, and 4, [corresponding to the values prr and (p+2)7
of the instantaneous phase| have the same sign [Fig. 13(a)],
and hence the corresponding taps must have the same polar-
ity. The simplest means of synthesizing this phase inversion
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Fig. 13. (a) Phase inversion of a constant carrier waveform. Samples at
the times £, and #p12 have the same sign. (b)-(d) Various transducer
configurations for the implementation of phase inversion (left) and
expected impulse responses (right).

Ny

Fig. 14. Phaseinversion experimentally obtained using the configuration
of Fig. 13(b) (upper trace) and that of Fig. 13(d) (lower trace).

appears to be the construction of an interdigital array having
two consecutive fingers connected to the same collector |Fig.
13(b)]. It has been observed, however, that this arrangement
fails to provide the required impulse response, since two consec-
utive electrodes of the same potential bound an inactive gap
in the array [7], [18]. According to our operation model, this
impaired performance consists in the fact that the amplitude
of the impulse response of each of these finger pairs is one half
that of the other fingers [Fig. 13(b) ]. In fact, each finger of the
inversion pair faces only on one side a finger of the opposite
comb, while all other fingers are facing on both sides. Evidence
of this factis given by the experimental response in Fig. 14,3
Squire et al. [7] synthesized phase inversions using the
structure schematically shown in Fig. 13(c). In our opinion,
the impulse response of the electrode that is run between the
fingefrs of the array in correspondence of the inversion point
is zero. The reason for this is the same as for the zero response
of the meander reference electrodes in the transducer illus-
trated in Fig. 8, ie., this electrode determines a balanced
potential difference between the leads of the two adjacent

3 Another proof of the influence of the facing length on the impulse-
response amplitude is given by the fact that the first and the last finger
of an array also provide about half the amplitude of the internal fingers
when the rise time of the system is small with respect to half a period of
the carrier.
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Fig. 13. Spectral band distribution obtained by sampling a kth subharmonic of #(f). The

Eth spectrum coincides with that of k(f).

fingers. According to our model, the set of samples that
corresponds to this arrangement is that shown in Fig. 13(c).
The bipolar structure of interleaved fingers with a mean-
der-like reference electrode described above seems suited to
provide phase inversion using the configuration shown in Fig.
13(d). However, it can be recognized that the meander finger
corresponding to the inversion point, facing electrodes of the
same comb, provides an impulse response of the same ampli-
tude and opposite sign of that of the inversion finger pair [Fig.
13(d)]. The phase inversion is obtained in this manner by a
sudden frequency change. The experimental response shown
in Fig. 14 confirms approximately the predicted behavior,
Thus far, for the sake of simplicity, we have limited our
considerations to impulse responses with linear PM law. When
the PM is not linear, the time interval and width of the sam-
ples are not uniform, and the spatial interval and width of the
corresponding tapping electrodes must be accordingly graded.
The edges of the nth electrode must be located at the positions

Xp1 = X + viay

Xno = X + ?th (20)
where x is the direction of surface-wave propagation, v is the
propagation velocity, X is an arbitrary reference, and 4,2 are
given by (7). ‘

It must be noted that the top of the samples considered in
Section IV is graded according to the shape of the correspond-
ing section of the envelope a(#) (Fig. 2). This shaping, how-
ever, cannot be realized by the tapping electrodes, since the
metal strips are equipotential. Electrodes thus synthesize
samples with a flat top, but the difference is negligible if the
value of p in (7) is suitably less than , i.e., if the electrode
width is small with respect to the electrode spacing.*

The above design of the tapping electrodes is based on a
simplified model of the physical process of surface-wave gen-
eration and detection. We have assumed that electrodes act
essentially as ideal sensors, i.e., work as low-coupled nonre-
flecting taps capable of exciting or detecting a potential dis-
tribution corresponding to their geometrical configuration.
Experiments confirm the existence of the predicted harmonic
responses, but show obviously noticeable discrepancies in the
values of the amplitude of these harmonic components with

4 The investigation of the influence of this approximation on the
desired transfer function would require the evaluation of the spectrum
of the sampled impulse response with flat-top samples. If samples are
uniform in spacing and width, it is known that the spectrum of the re-
constructed waveform results, weighted by the Fourier transform of the
sampling pulse [19]. Hence, to reduce distortion, the pulsewidth must
be suitably small for the corresponding bandwidth to be large in com-
parison with the maximum frequency of the required transfer function.
One can reasonably assume that an analogous condition holds in the case
of nonuniform sampling pulse width, and therefore the maximum sample
width must be dimensioned according to the operation bandwidth.

respect to the Fourier coefficients (9). These coefficients, in
fact, have been derived merely using signal-analysis concepts,
without regard for the physical operation of surface-wave
tapping. A rigorous investigation of the actual physical opera-
tion would require the solution of the coupled electromechani-
cal equations subject to the boundary conditions [16]. This
problem has been investigated by several authors [16], [20]-
[22] for interdigital structures of constant electrode pitch,
width, and aperture and introducing simplifying assumptions.
Various evaluations were obtained for the relative amplitudes
of the harmonic components coupled to the transducer geome-
try. The evaluation of these amplitudes for an array of non-
uniform pitch and with fingers graded in size appears ex-
tremely difficult, and is beyond the scope of the present work.
In spite of this fact, ASW filters constructed following the
above design criterion exhibit responses in sufficiently good
agreement with the theoretical predictions, and this seems to
suggest that the actual operation of surface-wave tapping
transducers is not too far from the simplified model described
here.

VI. ReEpucTioN oF THE TAP NUMBER

The investigation of the number of samples required for
the synthesis of a specified impulse response leads to interest-
ing results.

From (4), this number comes out to be equal to the number
of w-increments of ¢(¢) in the time interval T, i.e.,

)]

where ¢(t) has been assumed a single-valued function of t.
If 7 is the time average of the instantaneous frequency f(f)
= (1/2m)(de(t)/dt), given by

= oz 4(G)-#(3)] @

the number (21) can be simply written as

N = 2T.

(21)

(23)

The spectral distribution of the sampled impulse response
derived in Section IV suggests, however, that any one of the
harmonic waveforms of the series (10) can be generated from
the sample sequence by bandpass filtering the corresponding
spectrum, provided that this is not overlapped by the others.
Let us consider then a set of samples whose fundamental
spectrum is a kth subharmonic (with % odd) of the given im-
pulse response k(¢ (3).

The kth harmonic spectrum of this set of samples coincides
with the spectrum H(f) of k(f) (Fig. 15), and therefore, pro-
vided that this spectrum is not overlapped by the others, the
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reconstruction of 4(¢) from this sample set is allowed. It fol-
lows that the sample number (23) is redundant and can be
reduced. In fact, phase sampling of the subharmonic waveform

1
() = a() cos| 900 | (20
leads to a number of sampling points
Ny = 2]—[ T (25)
k
occurring at the times where
1 .
;d)(t) = pnm, n = integer (26)

and thus coinciding with one every % of the sampling points
given by (4).

From Fig. 15it can be easily derived that the kth spectrum
is not overlapped by any other if

B 2

P (27)
fo E4+1

Hence, for a given fractional bandwidth B/f,, the maximum
value kys of k results in the maximum odd integer contained in

22— 1. (28)

For the sake of simplicity, let us assume that fo/ B is an integer
[so that the number (28) is odd] and that f, coincides with 7.
Then, from (25) and (28), the minimum sample number re-
sults in

Nmiu = (29)

From the above arguments it follows that the minimum
number of samples that permits the reconstruction of %(%)
depends on its fractional bandwidth B/f,. According to the
condition (13), the phase-sampling procedure cannot be ap-
plied if B/fy exceeds unity. When B/f, is contained in the
range

1
> -

B
1> —
foo 2

the sample number is given by (23). A reduction of this num-
ber is allowed only if B/fo<1/2. Note that whatever is the
fractional bandwidth in the interval

the maximum odd integer in (28) is 2g—1, so that the mini-
mum sample number is always

2T
2g — 1

min =

From (29) it appears that, for a given bandwidth B, Nui, has
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a value contained in the range
ZBT > Nmin > BT

depending on the value of fo >2B. When fo>>2B, Ny is very
close to BT.

In the case of the constant carrier-frequency waveform
(3"), we have shown by similar arguments [9] that the mini-
mum sample number is obtained by dividing the number (23)
(where f coincides now with the value of the carrier frequency
fo) by the maximum odd integer contained in the ratio

o

3 (30)

In the particular case that this ratio is itself an odd integer, the
minimum sample number becomes exactly BT.

The possibility of reducing the number of the impulse-
response samples, and hence the number of the tapping elec-
trodes in an ASW transversal filter, can have attractive appli-
cations for several reasons. First of all, when the operation
frequency of ASW filters is extended up to microwaves, the
resolution and the definition of an electrode pattern designed
at a fundamental frequency become extremely hard to achieve
using both electron-beam as well as photolithographic fabrica-
tion. Moreover, the effect of coupling and mutual interaction
between the electrodes rapidly grows with the electrode num-
ber. A reduction of this number would yield a simplified design
and an easier implementation of the device [23]. On the other
hand, a reduction of the tap number has its counterbalance
in a reduction of the output signal due to the decrease of the
harmonic-spectra amplitudes. In principle, the signal-to-
noise ratio of an ASW filter is not affected by the amplitude
of the filter transfer function. However, the reduction of the
output signal limits the dynamic range of the device, which is
a basic requirement in weak signal-processing systems. Hence,
the advantages of adopting a reduction factor £ <kjr must be
evaluated by taking into account the dynamic-range degrada-
tion that can be tolerated.

The form of the Fourier coefficients (9) predicts that the
amplitudes of the harmonic responses depend on the trans-
ducer geometry in terms of the electrode width-to-period
ratio. As mentioned above, however, the values of these coeffi-
cients are not reliable, since they do not take into account the
physical nature of ASW devices. The actual dependence of the
harmonic responses on the electrode width-to-period ratio has
been both theoretically and experimentally investigated only
for arrays of electrodes of constant period, width, and aperture
[16], [20]-[22], [24]. Further investigation is needed, how-
ever, for more complicated geometries. It is to be remarked
that the interdigital transducer with a meander-like reference
electrode, described in the previous section, can represent an
interesting means for third-harmonic transducer operation.
The response shown in Fig. 9 was obtained making the elec-
trode width equal to one eighth of the acoustic wavelength,

VII. ApPLICATION OF ASW FILTERS TO SIGNAL PASSIVE
GENERATION AND MATCHED FILTERING

Because of their capability of synthesizing complicated
impulse responses, ASW filters represent a powerful tool for
signal passive generation and matched filtering [4]. A very
attractive feature of such devices is, moreover, that one and
the same filter can be used to perform both these functions.
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A. Signal Passive Generation

The approach of generating a signal from a filter having
this signal as the impulse response is referred to as “passive”
generation. When impulsing a transversal filter designed ac-
cording to the phase-sampling procedure, its time response is
described by the series (10). In principle, each of the terms
of this series can be generated by selecting the corresponding
spectrum at the output of the device, provided that this
spectrum is not overlapped by the others. Thus passive gen-
eration permits us to obtain from the same filter one or more
signals having the same structure, but extending over different
frequency bands.

The tap configuration that synthesizes the sampled im-
pulse response (10) can be written as

4() =20, Z e[ C))

L
2

<« < (31)

L
2
where x is the coordinate along the delay line, v is the propaga-
tion velocity, and L=uT is the length of the delay line. When
driving the line by an impulse 6() from the input 1
(x=—(L/2)) (Fig. 1), the response is, apart from a constant
time delay

n0 = | [ o0 - v & @ 50

—®

= hs(1) ® g() (32)
where £=x/v, the symbol ® denotes the convolution opera-
tion, and g(#) represents the impulse response of the cascaded
bandpass filter. The convolution (32) can be written as the
Fourier transform of the product of the overall spectrum Hg(f)
of hg(?) by that of G(f) of the bandpass filter, i.e.,

no) = [ EspG@eif (33)

If G(f) selects the band m(fo— (B/2)) +m(fo+(B/2)) occu-
pied by the mth harmonic spectrum H™(f), the output wave-
form is the mth harmonic term #™(£) = Cna(t) cos [me(t)] of
the series (10), i.e.,

ri(t) = wam(f)eﬂ”“ df = Cna(t) cos [me(®)]. (34)

B. Signal Maiched Filtering

Signal passive generation is particularly advantageous in
correlation receivers, as in radar, sonar, and digital com-
munication systems, where the basic problem is the correla-
tion of a given signal s(¢) by means of a filter having conjugate
characteristics. Such a filter, referred to as a “matched”
filter, must have a transfer function that is the complex con-
jugate of the spectrum S(f) of s(¢):

H(f) = vS*(/)

with v a real constant, i.e., an impulse response that is the
time reverse of the signal s(¢):

B(t) = ys(—1).

(33)

(36)
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A noticeable feature of transversal filters is that their impulse
response hg(f) becomes hg(—t) when reversing the direction of
the input signal propagation in the delay line. In fact, the
delay line shown in Fig. 1 has two input ports,® and taps are
scanned in one sense or the other depending on which port is
used as the input. This feature yields that the same filter used
for passive generation of a signal by impulsing the delay line
from input 1 can be used for matched filtering the same signal
simply by applying it to input 2. This capability offers the
important advantage that the matched filter tracks the signal
even if the delay times drift for temperature variations or
other causes.

When the filter is driven with the signal 4™(f) (34) from
port 2 (x=L/2), the response is, apart from a constant time
delay

rz(t)

(]

[+ om0

[

[ past-0)

i

[ mpmsper ay. 37)

Since the product H™(f)Hs*(f) is zero outside the band

m(fo— (B/2)) +m(fo+(B/2)), where Hg(f)=H"(f), the re-

sponse (37) becomes

n) = [ B0 ey

—®%

= Gt [ hmta — i) 38)

which is the autocorrelation function of A™(¢).

VIII. EXPERIMENTAL MODELS

In this section we describe experimental models of ASW
filters, all constructed on quartz and operating at relatively
low frequency. In all experiments the input signal was
launched using a broad-band transducer.

A. Dispersive Fillers

The synthesis of dispersive characteristics is one of the
more interesting applications of ASW filters, because of the
extreme simplicity of this method with respect to conven-
tional techniques. The previous theory is applied here to the
design of two types of dispersive filters: one having a linear
group delay versus frequency characteristic and the other a
hyperbolic one. The first step for the filter design is to derive
in the time domain the impulse response corresponding to the
characteristics assigned in the frequency domain. This is per-
formed by calculating the inverse Fourier transform of the
required transfer function, which, if not possible otherwise,
can be evaluated by numerical computation.

Linear Group Delay versus Frequency Characteristic: Using
the principle of stationary phase [14], it can be shown that a
linear group delay versus frequency characteristic with a con-

5 Note that a transversal filter is a three-port reciprocal structure,
i.e., its transfer function does not change by exchanging the output with
the input.
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stant amplitude response corresponds approximately to. the
rectangular-envelope linear FM impulse response

cos [2‘“’<f0f + gﬂ)], for | ¢| S%‘

0

= 0, elsewhere (39) 104
where « is the FM rate. From (4), the sampling points are T T
. . 8 9 10 Mhz
given by the times #,, where .
db
o . 100
2w { fot + P 12) = nm, #n = integer sl
that provides
40
7foN? n 20+
1

tn=—~]r—°+4/<]ri>?+fl, [tnlsg-

Since the envelope of the impulse response (39) is constant, Fig. 16. Frequency response for a linear-dispersive transducer. Top: .

i‘e.’ a(tn) _ 1, for any 7, the electrodes of the array must all measured group delay versus frequency cha.ra(‘:tenstlc. Bottom:
: measured amplitude versus frequency characteristic.

have the same aperture. From (7), the electrode edges must :

be located at the positions corresponding to the times

S8 8 fo M

fn1,2=—ﬁ+/‘/<fi> +—<ﬂ$i>, p < .
a « o 2w v -

The signal characteristics used in an experimental device (25)
were the following:

center frequency  fo = 9 MHz
bandwidth B =25MHz

time duration T = 32 us.

Since for linear FM the average frequency f (22) coincides
with the center frequency fo, the finger number (23) for funda- . i
mental frequency operation is N=576. The fractional band- Fig. 17. Linear-dispersive transducer. Passive-generated signal (top)
width being less than 50 percent, this number can be reduced. and correlation signal (bottom) (5 us/div).

From (28), the maximum reduction factor is k=35, and the

minimum finger number results in Ny, = 115.

An interdigital array for fundamental frequency operation
was constructed for the value p=m/2. Broad-band transmitter
arrays were deposited at both ends of the receiving transducer
to realize the two input-port structures described in Section
VII. The measured group delay and amplitude versus fre- (a)
quency characteristics are shown in Fig. 16.

The signal (39) has important applications in pulse-com-
pression techniques [4], where the fundamental problem is the
synthesis of the phase equalizer for signal matched filtering.
As discussed in Section VII, the two-input structure of ASW
filters provides the means for both signal generation and
matched filtering. In Fig. 17 are shown the passive-generated
linear FM signal and its correlation pulse.

Harmonic operation was tested by constructing interdigi-
tal arrays for the reduction factors 2=3 and £=35, having the
same finger width as before.® In Fig. 18 the details of the cof-
relation pulses obtained by feeding with the same linear FM

(b)

6 The finger width in the reduced array cannot be increased to kp as
it could be if the array was designed for its own fundamental frequency .
operation, since, as discussed,4 the maximum finger width must be dimen-  Fig. 18. Linear-dispersive transducer. Details of the correlation pulse
sioned to the actual operation bandwidth. from the filter with (a) k=1 and (b) k=5 (0.5 us/div).
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signal the filters with k=1 and k=35 are compared. The ampli-
tude reduction resulted in ~19 dB.

Hyperbolic Group Delay versus Frequency Characteristic:.
Another signal of interest in correlation receivers is the lmear »

period-modulated waveform

(42)] s
ol 2

elsewhere

27
h(t) = cos l}b— In

=0, (40)

where b is the rate of the hyperbolic FM

1
=1 %

It can be shown, also using in this case the principle-of sta-
tionary phase, that the group delay versus frequency charac-
teristic of the related transfer function has a hyperbolic be-
havior [26]. The sampling times ?, are now given by

T
2

ty =

= Z;i’ [e®r2) —1],

The finger edges correspond to the times

tate = — [e[n+ (p/2m)1bj2 _ 1]'
b

Also, in this case, the fingers of the inte_rdigit/a\l array all have
the same aperture because of the constant signal envelope.
The characteristics of the experimental model are the fol-
lowing:

center frequency fo=9MHz
bandwidth B = 2.5MHz
time duration T = 30 us.

In this case, the center frequency fo does not coincide with the
average instantaneous frequency 7, which can be calculated
from (22) and (41). By inserting the value of ¥ in (23), the
tap number for fundamental frequency operation results in
N=2333. The value of the fractional bandwidth permits, how-
ever, a maximum reduction factor ky =35, so that the mini-
mum tap number is Npi, = 106. The experimental group delay
versus frequency response is shown in Fig. 19. In Fig. 20 are
‘compared the correlation pulses from the filters operating at
the fundamental and the fifth-harmonic frequency; the ampli-
tude ratio is ~12 dB [27].

B.. Bandpass Filters
The transfer function of an ideal bandpass filter, given by

. B
H(f) = e-iwin, mﬂf~ﬁ157

= 0, elsewhere (42)
corresponds to the impulse response
sin [#B(t — to)]
) = B—————"" cos {2nfo(f — 1 43
@ s -l @)

where ¢ is a constant group delay.

(41)
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Fig. 19. Hyperbolic-dispersive transducer. Measured group delay versus
frequency characteristic. Full line shows the expected delay.

Fig. 20. Hyperbolic-dispersive transducer. Details of the correlation
pulse from the filter with (a) k=1 and (b) k=35 (0.5 ws/div).

The preliminary consideration that must be made is that
this impulse response extends indefinitely in time, while the

" synthesis of a physical filter necessarily requires its limitation

to a finite duration. The need for truncating the impulse re-
sponse corresponding to a transfer function assigned in a finite
bandwidth is a general problem encountered when, as in ASW
devices, the filter synthesis is performed in terms of its time- -
domain specification. Impulse-response truncation produces
distortion in the frequency response that must be taken into
account in the filter design. As is well known, the limitation
of the impulse response (43) to a duration T around the time
to-produces ripples in the passband an in the stopband, and
affects the rapidity of the fronts at the bandedges. As T is
increased, ripples in the middle of the passband and in the
stopband lower, and the fronts become steeper. Since, how-
ever, the ideal transfer function (42) has discontinuities at the
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cutoff frequencies f=f,+ B/2, the magnitude of the ripples
around the bandedges cannot be reduced even for increasing
T because of the Gibbs’ phenomenon [28].

Another feature that must be taken into account in ASW\
bandpass filter design is the inherent limitation of the stop- =~

band due to the multiplicity of the frequency response. As
shown in Section 1V, the overall frequency response consists,
in. this case, of a succession of passbands, each of width B,
centered on the frequencies odd multiple of fo. Hence, the
upper stopband is limited to the frequency band fy+B/2
+3fo— (B/2) that is not interested by the third harmonic.
The width of the stopband depends, therefore, on the filter
fractional bandwidth.

The array for the synthesis of the bandpass impulse re-_
sponse (43) must have constant period: The finger positions

correspond to the sampling times

by =ty 4 —
n 0 Zfo

In this case, the fingers all have the same width, corresponding
to the fraction p/m of the sampling interval 1/2f,, i.e., its edges
correspond to the times

i)

47rfo .

I +

lut,e =

In an interdigital configuration, the finger lengths must be
designed so as to introduce the weights

B

nr——

2fo

A bandpass filter model was designed for the following data
[29]:

a(t,) =

8.125 MHz
1 MHz.

center frequency  fo =
bandwidth B =

Since the value of the fractional bandwidth is suitably low,
the condition (18) is met, and therefore, as discussed in Sec-
tion V, the length of the nth finger can be made linearly de-
pendent on the weight a(t,). The array pattern designed for a
duration T'=8/B is shown in Fig. 21. The number of fingers
for this time duration is N =130. One can clearly distinguish
that two consecutive fingers are connected to the same col-
lector where a phase inversion of the carrier occurs, due to the
sign change of the sin x/x function in (43). In Fig. 21 is shown
the filter impulse response. It can be remarked that the peak-
to-sidelobe ratio is lower than the expected one. This dis-
crepancy is attributable to the nonuniform finger lengths,
which, because of the nonuniform metallization of the sub-
strate, progressively distort the impinging wave, changing its
straight front into a concave one [30], [12]. An approach for
the reduction of this distortion has been recently described
[12], consisting of the insertion of extra fingers that serve to
equalize the velocity across the aperture of the array. These
extra fingers are colinear with the fingers of the array, but
are connected to the opposite collector, and are inactive, since
the adjacent fingers are at the same electrical potential.

The degradation of the peak-to-sidelobe ratic causes the
increase of the ripple magnitude that can be observed in Fig.
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Fig. 21. Bandpass transducer. Top: tapping electrode configuration.
Bottom: impulse response.

18 1] 85 MH:z

Fig. 22. Frequency response of the bandpass transducer. Top: amplitude
versus frequency characteristic; theoretical (dotted line) -and experi-
mental (continuous line) behavior. Bottom: measured group delay
versus frequency characteristic.

" 22 with respect to the theoretical behavior of the amplitude

versus frequency response. In the same figure is shown the
measured group delay versus frequency characteristic.

The panoramic view of the spectral response (Fig. 23)
shows the presence of the third harmonic,” but also the exis-
tence of a spurious response around 15.5 MHz due to bulk-

“wave excitation. Unfortunately, this spurious response yields a

further limitation of the filter stopband.

An ASW bandpass filter with a finger number reduced by
the factor 3 was obtained by suppressing two fingers every
three in the above mask. In Fig. 24 is shown its panoramic
frequency response obtained with a launching transducer

7 The asymmetric shape of the third-harmonic response is due to the
weighting effect of the launching transducer, which has a bandwidth of
about 4 MHz around 8 MHz,
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Fig. 23, Panoramic display of the amplitude versus frequency charac-
teristic of the bandpass filter, Vertical scale: 10 dB/div. Horizontal
scale: 2 MHz/div. Center frequency: 15.6 MHz,

Fig. 24.
teristic of the bandpass filter with k=3. Vertical scale: 10 dB/div.
Horizontal scale: 2 MHz/div. Center frequency: 10.8 MHz.

Panoramic display of the amplitude versus frequency charac-

working at 8 MHz. Ripples appear to be increased with
respect to those obtained with the nonreduced array. This is
mainly due to the failing validity of the approximation (18),
in agreement with the fact that the fractional bandwidth of
the fundamental spectrum is now three times as before.
Better performance of the reduced array could be achieved
by the rigorous design of the finger facing length described in
Section V. It must be noted that in bandpass filter design,
the reduction factor that can be adopted depends.on the
requirements on the stopband width, since the separation of
the harmonic responses decreases as k is increased.

Several time-weighting functions have been devised [31],
[32] capable of smoothing the ripples due to the Gibbs’ phe-
nomenon at the expense of a lower steepness of the fronts at
the bandedges. By modifying the above finger weights
according to the Fejér triangular function

[t= b

w(t) =1— 2 f~-——T—— (44)

we obtained the frequency response shown in Fig. 25 [33].
Ripples appear reduced to less than 1 dB. By the use of more
efficient weighting functions, as Lanczos’ one [32], and by
improving the electrode mask design, ripples as low as 0.1 dB
could be achieved.

The inherent limitation of ASW bandpass filter applica-
tions is the stopband-width constraint imposed by the pres-
ence of the spurious responses due to bulk waves and of the
harmonic responses. The amplitude of the harmonic responses
can be minimized by a suitable choice of the electrode width-
to-period ratio. A procedure for improving the stopband
rejection can consist in the use of two cascaded bandpass
arrays. This system cannot be implemented by directly using
a pair of bandpass arrays as launching and detecting trans-
ducers. In fact, fingers of different lengths launch elastic
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Fig.25. Amplitude versus frequency response of the triangular-weighted
bandpass filter (dotted line) compared with that of the unweighted
filter (continuous line).
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Arrangement of cascaded bandpass array.

T

.

Fig. 26.

.
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Fig. 27, Amplitude versus frequency response obtained by cascading

two triangular-weighted bandpass filters.

waves having fronts of different aperture, which produce a
nonuniform illumination of the receiving bandpass array. A
means for overcoming this inconvenience is shown in Fig. 26.
The electric signal collected by the broad-band transducer
T 41, illuminated by the wavefronts generated by the bandpass
array T4, is applied to the broad-band transducer T4, and
finally detected by the second bandpass array Ts. An acoustic
absorber, interposed between T and T, avoids direct cou-
pling of these arrays. The overall transfer function results in
the product of the transfer functions of the single bandpass
arrays. By this arrangement we have been able, using two
triangular-weighted bandpass filters, to achieve the frequency
response shown in Fig. 27. The bulk-wave response around
15.5 MHz was reduced to ~—35 dB, while the rejection in
the remaining stopband was as high as 60 dB. Ripples were not
exalted, since the two arrays were designed slightly staggered
in frequency, so that the overshoots in the amplitude versus
frequency response of one coincided with the undershoots in
the response of the other.
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Fig. 28.

ASW filter for processing a 13-b Barker-coded waveform.
Impulse responses for the transducer geometries described in Fig.
13(b) (upper trace) and (d) (lower trace).

C. Discrete Phase-Coded Waveform Generator

As an example of the ASW filter application to the genera-
tion and correlation of discrete phase-coded waveforms, we
experimented the synthesis of the classical 13-b Barker se-
quence [4] using the transducer geometries described in Fig.
13(b) and (d). Results on the generation of similar codes
using the geometry of Fig. 13(c) have been reported elsewhere
[34]. The arrays were designed for a carrier frequency of 4
MHz and a duration of 13 us. Each bit contains, therefore,
four RF cycles, generated by eight fingers. The phase inver-
sions of the generated sequences (Fig. 28) exhibit the charac-
teristics described in Section V. Third-harmonic distortion
can be remarked in the waveform generated by the array
with the meander reference electrode. As mentioned above,
the exaltation of the third harmonic appears to be a feature
of this type of transducer, as confirmed by the spectral re-
sponse shown in Fig. 29. By selecting the appropriate band,
sequences at 4 and at 12 MHz can both be generated from the
same filter.

I1X. CoxcLusIONS

It has been shown how ASW processors are inherently
transversal filters, whose transfer function is determined by
the configuration of a transducer array tapping the propa-
gated acoustic signal. This is the reason why the application
of the design procedure of linear transversal filters appears
the most appropriate instrument for deriving the design of
the tapping structure in ASW processors. This procedure
requires the computation of the impulse-response function
corresponding to the desired transfer function, and then the
construction of a sampled version of this function. The time
intervals, amplitudes, and sign of the samples determine,
respectively, the spacing, weights, and polarity of the elements
of the tapping structure. The particular nature of surface-
wave tapping led to the development of an appropriate
sampling procedure, according to which samples are taken
where the required impulse response has the same instanta-
neous phase. The application of this procedure yields to a de-
sign of the tapping configuration that is in accordance with
that derived using different approaches. Because of its gen-
erality, however, the described synthesis method provides a
comprehensive derivation of the various aspects of ASW
processor design and permits us, moreover, to deduct further
features of this design.
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Fig. 29. ASW filter-for processing a 13-b Barker-coded waveform.
Panoramic display of the amplitude versus frequency characteristics
for the transducer geometries described in Fig. 13(b) (upper trace)
and (d) (lower trace). Vertical scale: 10 dB/div. Horizontal scale:
2 MHz/div. Center frequency: 9.6 MHz.

The extremely hard problem of investigating the physical
mechanism by which elastic surface waves interact with the
tapping structure is beyond the scope of this work. However,
an elementary operation model was developed based on
simplified assumptions and experimental evidence. Using this

" model, transducer geometries able to synthesize impulse

responses of typical characteristics. have been illustrated.
Experiments conducted with these transducer geometries
show a noticeable agreement with the expected results.

Finally, a purpose of this paper was to demonstrate the
capability of implementing any complicated transfer function
by ASW filters. When considering the present state of the art
of surface-wave technology, one can envision that in the
next years the potentiality of this new tool will find more
and more applications, and ASW devices will be a common
component of future electronic systems.
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A Generalized Design Technique for Practical Distributed
Reciprocal Ladder Networks

RALPH LEVY

Abstract—A generalized design approach is presented for ladder
networks consisting of a cascade of constituent two-port networks
connected by short lengths of transmission lines. The design is.made
possible by the derivation of simple equations which define the in-
verter impedance and associated reference planes of any passive
lossless reciprocal two-port. This enables the general ladder network
to be equated to a prototype network at a reference frequency. An
example is given of the design of a coaxial low-pass filter where
fringing capacitances are compensated automatically.

INTRODUCTION

DISTRIBUTED reciprocal ladder network illustrated
in Fig. 1is defined here as a cascade of reciprocal two-
port subnetworks connected by means of transmission

lines, which are usually all of approximately equal length
and electrically short (between 0 and 3A\g/4). The network is
assumed to be lossless. The subnetworks may consist of
simple primarily lumped elements such as inductive or
capacitive irises or series gaps in a stripline, or distributed
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elements such as stubs or lengths of transmission line, or may
be mixed lumped and distributed in character. Examples of
such ladder networks are direct-coupled waveguide bandpass
filters, coaxial low-pass filters, impedance transformers, or
multielement directional couplers. The latter are four-ports,
but if symmetrical, may be decomposed into two-port even-
and odd-mode networks, and hence may be included in our
category.

A large number of papers have been published on the
design of individual ladder-network components, and a few
have included a discussion of theoretical design features com-
mon to a wider class of structures. Examples of the latter
include the use of lumped-element prototypes in the design
of direct-coupled filters and the general concept of the im-
pedance inverter by Cohn [1]. Another example is the intro-
duction of the quarter-wave transformer as a prototype cir-
cuit for the design of many ladder networks by Young [2].

The result of a typical distributed network synthesis is an
idealized component often consisting of a cascade of equal
length (commensurate) lines, with or without commensurate
stubs. In practice, the component will have junction and dis-



